Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Molecules ; 29(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338327

RESUMEN

Quinolizidine alkaloids (QAs) are toxic secondary metabolites of the Lupinus species, the presence of which limits the expansion of lupin beans consumption, despite their high protein content. Evaluation of the level of alkaloids in edible Lupinus species is crucial from a food safety point of view. However, quantitation of QAs is complicated by the fact that not all important alkaloids used for quantitation are commercially available. In this context, we developed a method for the simultaneous quantitation of eight major lupin alkaloids using quantitative NMR spectroscopy (qNMR). Quantitation and analysis were performed in 15 different seed extracts of 11 Lupinus spp. some of which belonged to the same species, with different geographical origins and time of harvest, as well as in all aerial parts of L. pilosus. The mature seeds of L. pilosus were found to be a uniquely rich source of multiflorine. Additionally, we developed a protocol using adsorption or ionic resins for easy, fast, and efficient debittering of the lupine seeds. The protocol was applied to L. albus, leading to a decrease of the time required for alkaloids removal as well as water consumption and to a method for QA isolation from the debittering wastewater.


Asunto(s)
Alcaloides , Lupinus , Alcaloides de Quinolizidina , Lupinus/química , Alcaloides/análisis , Semillas/química
2.
Molecules ; 29(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338370

RESUMEN

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Asunto(s)
Diterpenos , Rosmarinus , Salvia , Abietanos/química , Rosmarinus/química , Salvia/química , Grecia , Extractos Vegetales/química , Solventes , Diterpenos/análisis
3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255980

RESUMEN

Postprandial dysmetabolism is a common entity of type 2 diabetes mellitus (T2DM) and may act as a daily stressor of the already dysfunctional diabetic platelets. This study aims to investigate whether oleocanthal-rich olive oils (OO), incorporated into a carbohydrate-rich meal, can affect postprandial dysmetabolism and platelet aggregation. Oleocanthal is a cyclooxygenase inhibitor with putative antiplatelet properties. In this randomized, single-blinded, crossover study, ten T2DM patients consumed five isocaloric meals containing 120 g white bread combined with: (i) 39 g butter, (ii) 39 g butter and 400 mg ibuprofen, (iii) 40 mL OO (phenolic content < 10 mg/Kg), (iv) 40 mL OO with 250 mg/Kg oleocanthal and (v) 40 mL OO with 500 mg/Kg oleocanthal. Metabolic markers along with ex vivo ADP- and thrombin receptor-activating peptide (TRAP)-induced platelet aggregation were measured before and for 4 h after the meals. The glycemic and lipidemic response was similar between meals. However, a sustained (90-240 min) dose-dependent reduction in platelets' sensitivity to both ADP (50-100%) and TRAP (20-50%) was observed after the oleocanthal meals in comparison to OO or butter meals. The antiplatelet effect of the OO containing 500 mg/Kg oleocanthal was comparable to that of the ibuprofen meal. In conclusion, the consumption of meals containing oleocanthal-rich OO can reduce platelet activity during the postprandial period, irrespective of postprandial hyperglycemia and lipidemia.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Diabetes Mellitus Tipo 2 , Fenoles , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Aceite de Oliva/farmacología , Ibuprofeno , Estudios Cruzados , Periodo Posprandial , Mantequilla
4.
J Sci Food Agric ; 104(4): 1992-2005, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38018400

RESUMEN

BACKGROUND: Extra virgin olive oil (EVOO), a natural product with a multidisciplinary role, has been and is continuing to be studied from several points of view. Among them, its chemical analysis is of major importance and several methods have been used. Nuclear magnetic resonance (NMR) spectroscopy has inherent advantages, among them monitoring the chemical constituents without the need for a separation technique and without, for instance, possible carry-over effects. Additionally, several magnetic resonance spectroscopic techniques can provide a novel powered insight into the nature and properties of a sample under study. Moreover, -omics procedure can reveal new information and can lead to the classification of populations under study. The main objective of the present work was the possible classification of the EVOO samples based on their aldehyde content using a proposed unreferenced 1 H-NMR spectroscopic quantification method combined with a metabolomic approach. Moreover, the study of the impact of such elevated aldehyde content on several spectra regions of importance in the proton NMR spectra led to the proposal of a possible new isomer indicator. RESULTS: Univariate analysis of 12 EVOO samples showed that oleacein, oleocanthal, elenolic acid, hydroxytyrosol/hydroxytyrosol derivatives and tyrosol/tyrosol derivatives strongly differentiated two classes of EVOO: OEH (for high aldehyde EVOO content) and OE (for non-high aldehyde content). Moreover, we pointed out the 'impact' of such elevated secoiridoid and derivatives content, through their moieties' units, on a range of several resonances of the 1 H-NMR spectrum. The metabolomic approach demonstrated the classification of EVOO samples based on their secoiridoid and derivatives content. Multivariate analysis showed a strong influence on the discrimination of the EVOO classes based on the protons resonating at the aldehyde region of the 1 H-NMR spectrum; the aldehyde protons corresponding to 5S,4R-ligstrodial and 5S,4R-oleuropeindial, oleacein, oleocanthal, elenolic acid, p-HPEA-EA, 3,4-DHPEA-EA, 5S,4R- and 5S,4S-ligstrodial and the proton corresponding to a new compound were reported for the first time. This isomer compound, reported for the first time, could serve as a possible indicator for EVOO classification. CONCLUSIONS: An unreferenced quantification method was proposed and EVOO samples were classified into two classes: OEH and OE, according to their aldehyde content, gaining thus probably higher nutrient and possible pharmacological value. Moreover, we point out the 'impact' of such elevated aldehyde content on several spectral regions of the 1 H spectrum. Finally, a new compound was detected in the OEH samples and is reported for the first time. This compound could possibly be an indicator. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Monoterpenos Ciclopentánicos , Iridoides , Fenoles , Alcohol Feniletílico/análogos & derivados , Protones , Aceite de Oliva/química , Iridoides/análisis , Aldehídos , Espectroscopía de Resonancia Magnética
5.
J Nat Prod ; 87(1): 77-84, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38158562

RESUMEN

In recent years, the enantiomeric ratio of cannabichromene (CBC) within the cannabis plant has attracted significant attention. Cannabichromene is one of the well-known cannabinoids found in cannabis, along with THC (tetrahydrocannabinol) and CBD (cannabidiol). Cannabichromene exists as a scalemic mixture, meaning it has two enantiomers, (S)-cannabichromene and (R)-cannabichromene, with the ratio between these enantiomers varying among different cannabis strains and even within individual plants. This study presents an accurate and robust chiral NMR method for analyzing cannabichromene's enantiomeric ratio, a well-investigated cannabinoid with numerous pharmacological targets. The use of Pirkle's alcohol as the chiral solvating agent (CSA) or, alternatively, the use of (S)-ibuprofen as a chiral derivatizing agent (CDA) facilitated this analysis. Moreover, the chiral NMR method proves to be a user-friendly tool, easily applicable within any NMR facility, and an expanded investigation of cannabichromene chirality may provide insights into the origin, cultivation, treatment, and processing of Cannabis sativa plants. This study also undertakes a pharmacological examination of the (R)- and (S)-cannabichromenes concerning their most extensively studied pharmacological target, the TRPA1 channels, with the two enantiomers showing the same strong agonistic effect as the racemic mixture.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Espectroscopía de Protones por Resonancia Magnética , Cannabinoides/farmacología , Cannabis/química , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Dronabinol
6.
Nutrients ; 15(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37299499

RESUMEN

Several individual olive oil phenols (OOPs) and their secoiridoid derivatives have been shown to exert anti-proliferative and pro-apoptotic activity in treatments of human cancer cell lines originating from several tissues. This study evaluated the synergistic anti-proliferative/cytotoxic effects of five olive secoiridoid derivatives (oleocanthal, oleacein, oleuropein aglycone, ligstroside aglycone and oleomissional) in all possible double combinations and of total phenolic extracts (TPEs) on eleven human cancer cell lines representing eight cell-culture-based cancer models. Individual OOPs were used to treat cells for 72 h in half of their EC50 values for each cell line and their synergistic, additive or antagonistic interactions were evaluated by calculating the coefficient for drug interactions (CDI) for each double combination of OOPs. Olive oil TPEs of determined OOPs' content, originating from three different harvests of autochthonous olive cultivars in Greece, were evaluated as an attempt to investigate the efficacy of OOPs to reduce cancer cell numbers as part of olive oil consumption. Most combinations of OOPs showed strong synergistic effect (CDIs < 0.9) in their efficacy, whereas TPEs strongly impaired cancer cell viability, better than most individual OOPs tested herein, including the most resistant cancer cell lines evaluated.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Humanos , Antineoplásicos/uso terapéutico , Iridoides/farmacología , Neoplasias/tratamiento farmacológico , Aceite de Oliva/uso terapéutico , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Línea Celular Tumoral
7.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36902407

RESUMEN

Multiple sclerosis (MS) is a CNS inflammatory demyelinating disease. Recent investigations highlight the gut-brain axis as a communication network with crucial implications in neurological diseases. Thus, disrupted intestinal integrity allows the translocation of luminal molecules into systemic circulation, promoting systemic/brain immune-inflammatory responses. In both, MS and its preclinical model, the experimental autoimmune encephalomyelitis (EAE) gastrointestinal symptoms including "leaky gut" have been reported. Oleacein (OLE), a phenolic compound from extra virgin olive oil or olive leaves, harbors a wide range of therapeutic properties. Previously, we showed OLE effectiveness preventing motor defects and inflammatory damage of CNS tissues on EAE mice. The current studies examine its potential protective effects on intestinal barrier dysfunction using MOG35-55-induced EAE in C57BL/6 mice. OLE decreased EAE-induced inflammation and oxidative stress in the intestine, preventing tissue injury and permeability alterations. OLE protected from EAE-induced superoxide anion and accumulation of protein and lipid oxidation products in colon, also enhancing its antioxidant capacity. These effects were accompanied by reduced colonic IL-1ß and TNFα levels in OLE-treated EAE mice, whereas the immunoregulatory cytokines IL-25 and IL-33 remained unchanged. Moreover, OLE protected the mucin-containing goblet cells in colon and the serum levels of iFABP and sCD14, markers that reflect loss of intestinal epithelial barrier integrity and low-grade systemic inflammation, were significantly reduced. These effects on intestinal permeability did not draw significant differences on the abundance and diversity of gut microbiota. However, OLE induced an EAE-independent raise in the abundance of Akkermansiaceae family. Consistently, using Caco-2 cells as an in vitro model, we confirmed that OLE protected against intestinal barrier dysfunction induced by harmful mediators present in both EAE and MS. This study proves that the protective effect of OLE in EAE also involves normalizing the gut alterations associated to the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Iridoides , Olea , Animales , Humanos , Ratones , Células CACO-2 , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Inflamación/metabolismo , Iridoides/uso terapéutico , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo
8.
Environ Entomol ; 52(3): 327-340, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36995691

RESUMEN

Ceratitis capitata (Wiedemann), also known as the Mediterranean fruit fly, is one of the most serious pests for several fresh fruit commodities causing extensive fruit losses worldwide. The response of C. capitata adults to fruit and nonfruit volatiles has been extensively studied. However, the linkage between fruit volatiles and the female ovipositional choice has not been fully elucidated. The present study focused on identifying the volatile organic compounds emitted by detached intact fresh fruits (oranges, lemons, bergamots, and apples) and citrus essential oils and evaluate their effect on Mediterranean fruit fly oviposition. There were more than 130 and 45 volatiles compounds detected in fruits odors and citrus essential oils, respectively. The volatile profile of fruits was dominated either from terpenes and terpenoids or from esters of butanoic, hexanoic, and octanoic acids while limonene was by far the most abundant compound in all citrus essential oils. Oviposition of C. capitata was strongly affected by volatiles emanated from both intact fruit and the citrus essential oils. Regarding the volatiles of the intact fruits, the odor of sweet orange elicited strong oviposition responses to females, while bergamot had the least stimulatory effect on oviposition. Bergamot oil also elicited the least oviposition stimulation compared to sweet orange and lemon essential oils. Our discussion elaborates on the role of fruit volatiles on host finding behavior and fruit susceptibility to C. capitata infestation and includes possible practical implication of the above findings.


Asunto(s)
Ceratitis capitata , Citrus , Aceites Volátiles , Tephritidae , Femenino , Animales , Ceratitis capitata/fisiología , Odorantes , Aceites Volátiles/farmacología , Oviposición/fisiología , Terpenos/farmacología
9.
Acta Derm Venereol ; 103: adv00868, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36789756

RESUMEN

Dandruff is a common scalp disorder with multiple microbial and host-related factors contributing to its aetiology, including alterations in scalp sebum. Despite existing evidence that the yeast Malassezia restricta plays a key role in the onset of dandruff, the interplay of these factors is poorly understood. Recently, squalene monohydroperoxide and malondialdehyde were established as biomarkers of dandruff-afflicted scalp, highlighting the role of sebum lipoperoxidation in the triggering and maintenance of dandruff, although its mechanism of action is unknown. The current study provides evidence that M. restricta mediates sebum peroxidation, leading to production of squalene monohydroperoxide and malondialdehyde. Furthermore, in vitro data show that these lipoperoxidation products act on epidermal cells and alter the skin barrier. These results support the role of Malassezia restricta-induced lipoperoxides as triggers of dandruff, which suggests that blocking their production could be a novel anti-dandruff treatment approach.


Asunto(s)
Caspa , Malassezia , Humanos , Caspa/tratamiento farmacológico , Caspa/etiología , Malondialdehído
10.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566314

RESUMEN

The widespread use of phytocannabinoids or cannabis extracts as ingredients in numerous types of products, in combination with the legal restrictions on THC content, has created a need for the development of new, rapid, and universal analytical methods for their quantitation that ideally could be applied without separation and standards. Based on previously described qNMR studies, we developed an expanded 1H qNMR method and a novel 2D-COSY qNMR method for the rapid quantitation of ten major phytocannabinoids in cannabis plant extracts and cannabis-based products. The 1H qNMR method was successfully developed for the quantitation of cannabidiol (CBD), cannabidiolic acid (CBDA), cannabinol (CBN), cannabichromene (CBC), cannabichromenic acid (CBCA), cannabigerol (CBG), cannabigerolic acid (CBGA), Δ9-tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabinolic acid (Δ9-THCA), Δ8-tetrahydrocannabinol (Δ8-THC), cannabielsoin (CBE), and cannabidivarin (CBDV). Moreover, cannabidivarinic acid (CBDVA) and Δ9-tetrahydrocannabivarinic acid (Δ9-THCVA) can be distinguished from CBDA and Δ9-THCA respectively, while cannabigerovarin (CBGV) and Δ8-tetrahydrocannabivarin (Δ8-THCV) present the same 1H-spectra as CBG and Δ8-THC, respectively. The COSY qNMR method was applied for the quantitation of CBD, CBDA, CBN, CBG/CBGA, and THC/THCA. The two methods were applied for the analysis of hemp plants; cannabis extracts; edible cannabis medium-chain triglycerides (MCT); and hemp seed oils and cosmetic products with cannabinoids. The 1H-NMR method does not require the use of reference compounds, and it requires only a short time for analysis. However, complex extracts in 1H-NMR may have a lot of signals, and quantitation with this method is often hampered by peak overlap, with 2D NMR providing a solution to this obstacle. The most important advantage of the COSY NMR quantitation method was the determination of the legality of cannabis plants, extracts, and edible oils based on their THC/THCA content, particularly in the cases of some samples for which the determination of THC/THCA content by 1H qNMR was not feasible.


Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/análisis , Cannabinol , Cannabis/química , Dronabinol/análisis , Extractos Vegetales/análisis
11.
Molecules ; 27(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458697

RESUMEN

Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4',7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.


Asunto(s)
Dibenzodioxinas Policloradas , Rosmarinus , Neoplasias Cutáneas , Animales , Citocromo P-450 CYP1A1/metabolismo , Cobayas , Humanos , Queratinocitos/metabolismo , Ligandos , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Rosmarinus/metabolismo , Neoplasias Cutáneas/metabolismo
12.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613449

RESUMEN

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacología , Aceite de Oliva/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Línea Celular
13.
Foods ; 10(12)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34945559

RESUMEN

BACKGROUND: The phenolic fraction of extra virgin olive oil (EVOO) has disease preventive and health-promoting properties which are supported by numerous studies. As such, EVOO is defined as a functional food. The aim of the present study was to characterize the phenolic profile of olive oil from cultivars farmed in the Ionian Islands (Zakynthos, Kefalonia, Lefkada, and Kerkyra) and to investigate the association of phenols to antioxidant activity, which is central to its functionality. Furthermore, the study investigates whether multivariate analyses on the concentration of individual biophenolic compounds and genetic population diversity could classify the olive oil samples based on their geographic origin. METHODS: Phenols were determined in 103 samples from different Ionian Island tree populations by 1H nuclear magnetic resonance (NMR), and sample antioxidant activity was measured by their capacity to reduce the free radical 2,2-diphenyl-1-picrylhydrazyl) (DPPH). Genetic diversity was measured by estimating Nei's population genetic distance using 15 reproducible bands from random amplified polymorphic DNA (RAPD) genotyping. RESULTS: Principal component analysis (PCA) of the secoiridoid concentrations clustered samples according to cultivar. Clustering based on genetic distances is not concordant with phenolic clustering. A cultivar effect was also demonstrated in the association between the concentration of individual phenols with DPPH reducing activity. CONCLUSIONS: Taken together, the study shows that the olive oil phenolic content defines "cultivar-specific phenolic profiles" and that environmental factors other than agronomic conditions contribute more to phenotype variance than genetics.

14.
Sci Rep ; 11(1): 22340, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785711

RESUMEN

Extra-virgin olive oil (EVOO) is a critical component of the Mediterranean diet, which has been found beneficial to human health. Bitterness is often positively associated with the presence of phenolic compounds in EVOO. There are twenty-five bitter taste receptors (TAS2Rs) in humans, each of which responds to specific bitter tastants. The identity of phenolic compounds and the bitter taste receptors they stimulate remain unknown. In this study, we isolated 12 phenolic and secoiridoid compounds from the olive fruit and the oil extracted from it, and tested their ability to stimulate bitter taste receptor activity, using a calcium mobilization functional assay. Our results showed that seven out of twelve studied compounds activated TAS2R8, and five of them activated TAS2R1, TAS2R8, and TAS2R14. The phenolic compounds oleuropein aglycon and ligstroside aglycon were the most potent bitter tastants in olive oil. TAS2R1 and TAS2R8 were the major bitter taste receptors activated most potently by these phenolic compounds. The results obtained here could be utilized to predict and control the bitterness of olive oil based on the concentration of specific bitter phenolics produced during the milling process of olives.


Asunto(s)
Iridoides/farmacología , Aceite de Oliva/química , Fenoles/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Iridoides/química , Fenoles/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
15.
Front Plant Sci ; 12: 671487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539687

RESUMEN

Specialized metabolism is an evolutionary answer that fortifies plants against a wide spectrum of (a) biotic challenges. A plethora of diversified compounds can be found in the plant kingdom and often constitute the basis of human pharmacopeia. Olive trees (Olea europaea) produce an unusual type of secoiridoids known as oleosides with promising pharmaceutical activities. Here, we transiently silenced oleuropein ß-glucosidase (OeGLU), an enzyme engaged in the biosynthetic pathway of secoiridoids in the olive trees. Reduction of OeGLU transcripts resulted in the absence of both upstream and downstream secoiridoids in planta, revealing a regulatory loop mechanism that bypasses the flux of precursor compounds toward the branch of secoiridoid biosynthesis. Our findings highlight that OeGLU could serve as a molecular target to regulate the bioactive secoiridoids in olive oils.

16.
J Agric Food Chem ; 69(29): 8081-8089, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34279926

RESUMEN

Bryophyllum pinnatum (Lam) Pers. (Crassulaceae) is widely used in folk medicine as leaf juice, aqueous, or hydro-ethanolic extracts. It is also listed as a medicinal plant in several countries such as France and Brazil. The main reported constituents are flavone glycosides, especially those with the rare 3-O-α-l-arabinopyranosyl-(1 → 2)-α-l-rhamnopyranoside moiety. Despite several phytochemical screenings indicating the presence of cyanide derivatives or alkaloids, there are no reports of nitrogenous metabolite characterization from this plant species. Nevertheless, the occurrence and the type of such compounds are of particular interest, as they may account for some of the numerous biological activities and ethnomedicinal uses described for B. pinnatum and could be regarded as chemical/taxonomic markers. Consequently, a hydro-ethanolic extract of B. pinnatum was investigated by using UHPLC-HRMS/MS and the nitrile glucoside sarmentosin was detected for the first time within the genus Bryophyllum/Kalanchoe. Considering the wide use of B. pinnatum and its closely related species for health purposes, the target metabolite was isolated by a combination of centrifugal partition chromatography in elution/extrusion mode and MPLC in order to confirm its structure. A linear, selective, precise, fast, and reliable 1H NMR quantitation method was then developed and validated and may become a tool for easy quality assessment of the plant species. The amount of sarmentosin was determined as 2.07% of the examined sample. Sarmentosin was also detected in Kalanchoe laciniata, confirming the occurrence of this compound within the genus.


Asunto(s)
Kalanchoe , Brasil , Francia , Glicósidos , Nitrilos , Extractos Vegetales , Hojas de la Planta , Espectroscopía de Protones por Resonancia Magnética
17.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669887

RESUMEN

In the last few years, a new term, "High-phenolic olive oil", has appeared in scientific literature and in the market. However, there is no available definition of that term regarding the concentration limits of the phenolic ingredients of olive oil. For this purpose, we performed a large-scale screening and statistical evaluation of 5764 olive oil samples from Greece coming from >30 varieties for an eleven-year period with precisely measured phenolic content by qNMR. Although there is a large variation among the different cultivars, the mean concentration of total phenolic content was 483 mg/kg. The maximum concentration recorded in Greece reached 4003 mg/kg. We also observed a statistically significant correlation of the phenolic content with the harvest period and we also identified varieties affording olive oils with higher phenolic content. In addition, we performed a study of phenolic content loss during usual storage and we found an average loss of 46% in 12 months. We propose that the term high-phenolic should be used for olive oils with phenolic content > 500 mg/kg that will be able to retain the health claim limit (250 mg/kg) for at least 12 months after bottling. The term exceptionally high phenolic olive oil should be used for olive oil with phenolic content > 1200 mg/kg (top 5%).


Asunto(s)
Espectroscopía de Resonancia Magnética , Aceite de Oliva/química , Fenoles/análisis , Estadística como Asunto , Aldehídos/análisis , Monoterpenos Ciclopentánicos/análisis , Grecia , Fenoles/química , Preservación Biológica
18.
ACS Pharmacol Transl Sci ; 4(1): 179-192, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615171

RESUMEN

Since the first discovery of its ibuprofen-like anti-inflammatory activity in 2005, the olive phenolic (-)-oleocanthal gained great scientific interest and popularity due to its reported health benefits. (-)-Oleocanthal is a monophenolic secoiridoid exclusively occurring in extra-virgin olive oil (EVOO). While several groups have investigated oleocanthal pharmacokinetics (PK) and disposition, none was able to detect oleocanthal in biological fluids or identify its PK profile that is essential for translational research studies. Besides, oleocanthal could not be detected following its addition to any fluid containing amino acids or proteins such as plasma or culture media, which could be attributed to its unique structure with two highly reactive aldehyde groups. Here, we demonstrate that oleocanthal spontaneously reacts with amino acids, with high preferential reactivity to glycine compared to other amino acids or proteins, affording two products: an unusual glycine derivative with a tetrahydropyridinium skeleton that is named oleoglycine, and our collective data supported the plausible formation of tyrosol acetate as the second product. Extensive studies were performed to validate and confirm oleocanthal reactivity, which were followed by PK disposition studies in mice, as well as cell culture transport studies to determine the ability of the formed derivatives to cross physiological barriers such as the blood-brain barrier. To the best of our knowledge, we are showing for the first time that (-)-oleocanthal is biochemically transformed to novel products in amino acids/glycine-containing fluids, which were successfully monitored in vitro and in vivo, creating a completely new perspective to understand the well-documented bioactivities of oleocanthal in humans.

19.
Front Oncol ; 11: 810249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127522

RESUMEN

AIM: Oleocanthal and oleacein (OC/OL) have important in vitro and in vivo antitumor properties; however, there is no data about their anticancer activity in humans. The aim of this pilot study was to test if patients at early stage of chronic lymphocytic leukemia (CLL) could adhere to and tolerate an intervention with high OC/OL extra virgin olive oil (EVOO) and if this intervention could lead to any changes in markers related to the disease. METHODS: A pilot dietary intervention (DI) was made in patients with CLL in Rai stages 0-II who did not follow any treatment (NCT04215367). In the first intervention (DI1), 20 CLL patients were included in a blind randomized study and were separated into two groups. One group (A) of 10 patients consumed 40 ml/day of high OC/OL-EVOO (416 mg/Kg OC and 284 mg/kg OL) for 3 months. A second group (B) of 10 patients consumed 40 ml/day of low OC/OL (82 mg/kg OC and 33 mg/kg OL) for 3 months. After a washout period of 9-12 months, a second intervention (DI2) only with High OC/OL-EVOO for 6 months was performed with 22 randomly selected patients (16 from the DI1 (8 from each group) and 6 new). Hematological, biochemical, and apoptotic markers were analyzed in the serum of the patients. In addition, cellular proliferation and apoptosis markers were studied in isolated proteins from peripheral blood mononuclear cells. RESULTS: The results of the DI1 showed beneficial effects on hematological and apoptotic markers only with High OC/OL-EVOO. During the DI2, a decrease in the white blood cell and lymphocyte count was observed (p ≤0.05), comparing 3 months before the intervention and 6 months after it. After 3 and 6 months of DI2, an increase (p ≤0.05) was observed in the apoptotic markers ccK18 and Apo1-Fas, and also in the cell cycle negative regulator p21, and also a decrease in the antiapoptotic protein Survivin, and in the cellular proliferation marker Cyclin D. CONCLUSIONS: This is the first clinical trial with High OC/OL-EVOO that indicates that it could be a promising dietary feature for the improvement of CLL inducing the apoptosis of their cancer cells and improving the metabolism of the patients. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04215367, identifier: NCT04215367.

20.
Molecules ; 25(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333745

RESUMEN

High cannabidiol (CBD) and cannabigerol (CBG) varieties of Cannabis sativa L., a species with medicinal properties, were regenerated in vitro. Explants of nodal segments including healthy axillary bud, after sterilization, were placed in Murashige-Skoog (MS) culture medium. The shoots formed after 30 days were subcultured in full- or half-strength MS medium supplemented with several concentrations of 6-benzyl-amino-purine (BA) or thidiazuron (TDZ). The highest average number and length of shoots was achieved when both full and half-strength MS media were supplemented with 4.0 µM BA. The presence of 4.0 µM TDZ showed also comparable results. BA and TDZ at concentrations of 4.0, 8.0 µM and 2.0, 4.0 µM respectively, displayed the maximum shooting frequency. The new shoots were transferred on the same media and were either self-rooted or after being enhanced with different concentrations of indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). Presence of 2.0 or 4.0 µM IBA or 4.0 µM NAA resulted to the optimum rooting rates. The maximum average number and length of roots per shoot was observed when the culture media was supplemented with 4.0 µM IBA or NAA. Approximately 92% of the plantlets were successfully established and acclimatized in field. The consistency of the chemical profile of the acclimatized in vitro propagated clones was assessed using quantitative 1H-NMR high throughput screening. In each variety, analysis of the micropropagated plant in comparison with the mother plant showed no statistically significant differences (p ≤ 0.05) in CBD+ cannabidiolic acid (CBDA) and CBG+ cannabigerolic acid (CBGA) content respectively, thus indicating stability of their chemical profile.


Asunto(s)
Biotecnología , Cannabidiol/análisis , Cannabinoides/análisis , Cannabis/química , Cannabis/fisiología , Fitoquímicos/análisis , Espectroscopía de Protones por Resonancia Magnética , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...